P.S. См. также другие публикации по теме adversarial, посвященные устойчивому машинному обучению
технические проблемы и идеи, родившиеся в бурных водах реки Abava (а равно как и на ее берегах, далеких и близких), выставленные на всеобщее обсуждение
Tuesday, February 17, 2026
Без времени
Системы глубокого обучения, обрабатывающие временные и последовательные данные, все чаще используются в критически важных для безопасности приложениях, включая мониторинг состояния здоровья, автономную навигацию и алгоритмическую торговлю. Однако эти системы обладают серьезной уязвимостью к атакам со стороны злоумышленников — тщательно разработанным возмущениям, которые вызывают систематическую неправильную классификацию, оставаясь при этом незаметными. В данной статье представлен всесторонний систематический обзор атак со стороны злоумышленников на системы классификации временных рядов, распознавания активности человека (HAR) и обучения с подкреплением (RL), основанный на анализе 127 статей, опубликованных в период с 2019 по 2025 год, в соответствии с рекомендациями PRISMA с документированной межэкспертной надежностью (κ = 0,83). Мы
устанавливаем единую четырехмерную таксономию, различающую характеристики атак в зависимости от целевых модальностей (носимые датчики IMU, датчики WiFi/радара, распознавание на основе скелета, медицинские/финансовые временные ряды и агенты RL), стратегий возмущения, временного диапазона и уровней физической реализуемости. Наш количественный анализ выявляет серьезные базовые уязвимости — атаки FGSM снижают точность HAR с 95,1% до 3,4% в условиях «белого ящика», — при этом демонстрируя, что переносимость между датчиками значительно варьируется от 0% до 80% в зависимости от расположения на теле и модальности. Критически важно, что мы выявляем существенный разрыв между показателями успешности цифровых атак (85–98%) и физически подтвержденных атак, при этом подтверждение с помощью аппаратного моделирования демонстрирует 70–97% успеха только для Wi-Fi и радаров, в то время как физические атаки с использованием носимых IMU остаются полностью неподтвержденными. Мы проводим систематический анализ механизмов защиты, включая обучение с использованием состязательных методов, подходы, основанные на обнаружении, сертифицированные средства защиты, и ансамблевые методы, предлагая структуру Temporal AutoAttack (T-AutoAttack) для стандартизированной оценки адаптивных атак. Наш анализ показывает, что существующие средства защиты демонстрируют снижение производительности на 6–23% при адаптивных атаках, при этом сертифицированные методы показывают наименьший разрыв, но приводят к снижению точности на 15–30%. Мы также выявляем новые уязвимости в архитектурах HAR на основе трансформеров и в системах прогнозирования временных рядов на основе LLM, которые требуют срочного внимания. Обзор завершается составлением приоритетной дорожной карты исследований, в которой определены восемь критических пробелов с указанием конкретных наборов данных, оценочных конвейеров и сроков внедрения. Мы предлагаем практические рекомендации по внедрению для специалистов в области носимых HAR, Wi-Fi/радарного зондирования, систем обучения с подкреплением и новых временных приложений на основе LLM. Эта работа предлагает первое унифицированное решение, объединяющее исследования временных рядов и состязательных систем обучения с подкреплением, закладывая основы для разработки надежных временных систем ИИ, пригодных для реального применения в критически важных областях безопасности. - Temporal Adversarial Attacks on Time
Series and Reinforcement Learning Systems: A Systematic Survey, Taxonomy, and Benchmarking Roadmap
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment