См. также другие публикации, посвященные LLM
технические проблемы и идеи, родившиеся в бурных водах реки Abava (а равно как и на ее берегах, далеких и близких), выставленные на всеобщее обсуждение
Saturday, February 14, 2026
Фальшивые новости
Большие языковые модели (LLM) все чаще используются в финансовой сфере. Их исключительные возможности анализа текстовых данных делают их хорошо подходящими для определения настроения финансовых новостей. Такая обратная связь может быть использована алгоритмическими торговыми системами (АТС) для принятия решений о покупке/продаже. Однако эта практика сопряжена с риском того, что злоумышленник может создавать «враждебные новости», призванные ввести в заблуждение LLM. В частности, заголовок новости может содержать «вредоносный» контент, который остается невидимым для читателей-людей, но все же обрабатывается БЛМ. Хотя в предыдущих работах изучались текстовые примеры враждебных новостей, их влияние на АТС, поддерживаемые LLM, в масштабах всей системы еще не было количественно оценено с точки зрения денежного риска. Чтобы противостоять этой угрозе, мы рассматриваем злоумышленника, не имеющего прямого доступа к АТС, но способного изменять заголовки новостей, связанных с акциями, в течение одного дня. Мы оцениваем две незаметные для человека манипуляции в финансовом контексте: замены омоглифов в Unicode,
которые вводят модели в заблуждение при распознавании названий акций, и скрытые текстовые условия, которые изменяют эмоциональную окраску заголовка новости. Мы реализовали реалистичную автоматизированную торговую систему (ATS) в Backtrader, которая объединяет прогноз цен на основе LSTM с эмоциональным состоянием, полученным с помощью LLM (FinBERT, FinGPT, FinLLaMA и шесть универсальных LLM), и количественно оценили денежное воздействие с помощью показателей портфеля. Эксперименты на реальных данных показывают, что манипулирование однодневной атакой в течение 14 месяцев может надежно ввести в заблуждение LLM и снизить годовую доходность до 17,7 процентных пунктов. Для оценки реальной осуществимости мы проанализировали популярные библиотеки для сбора данных и торговые платформы и опросили 27 специалистов в области FinTech, подтвердив наши гипотезы. Мы уведомили владельцев торговых платформ об этой проблеме безопасности. - Adversarial News and Lost Profits: Manipulating Headlines in LLM-Driven Algorithmic Trading
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment