Thursday, November 14, 2024

Пограничник

Новые угрозы для сетей IoT ускорили разработку систем обнаружения вторжений (IDS), характеризующихся переходом от традиционных подходов, основанных на сигнатурах атак или обнаружении аномалий, к подходам, основанным на машинном обучении (ML). Однако современные IDS на основе ML часто не могут явно интегрировать знания предметной области, не обладают объяснимостью и испытывают трудности с устранением атак нулевого дня. В этой статье мы предлагаем IDS-Agent, первого агента ИИ, работающего на основе больших языковых моделей (LLM) для обнаружения вторжений. IDS-Agent предсказывает, является ли входной сетевой трафик безопасным или вредоносным, с объяснением результатов прогнозирования. Рабочий процесс IDS-Agent включает последовательность действий, генерируемых его основным LLM на основе рассуждений о наблюдениях за состоянием. Пространство действий IDS-Agent включает извлечение и предварительную обработку данных, классификацию, знания, и извлечение памяти, а также агрегацию результатов — эти действия будут выполняться с использованием обширных инструментов, в основном специализированных для IDS. Кроме того, IDS-Agent оснащен памятью и базой знаний, которая сохраняет информацию из текущихи предыдущих сеансов, а также документы, связанные с IDS, что расширяет его возможности рассуждений и генерации действий. Системные подсказки IDS-Agent можно легко настраивать для регулировки чувствительности обнаружения или выявления ранее неизвестных типов атак. В наших экспериментах мы демонстрируем сильные возможности обнаружения IDS-Agent по сравнению с IDS на основе ML и IDS на основе LLM с инжинирингом подсказок. IDS-Agent превосходит эти базовые показатели SOTA на тестах ACI-IoT и CIC-IoT с показателями обнаружения F1 0,97 и 0,75 соответственно. - IDS-Agent: An LLM Agent for Explainable Intrusion Detection in IoT Networks. Полезный пример агента для LLM.

No comments: