Страницы

Thursday, October 31, 2024

Оцифровка запаха

Это случилось. Сколько интересных (пахучих) приложений появится ...

Wednesday, October 30, 2024

Все о Гауссе

Распределение Гаусса, или нормальное распределение, является ключевым предметом в статистике, машинном обучении, физике и практически любой другой области, которая имеет дело с данными и вероятностью. Это один из тех предметов, как π или правило Байеса, который настолько фундаментален, что люди относятся к нему как к иконе. - отсюда

Tuesday, October 29, 2024

Почему они галлюцинируют?

Интересный эксперимент: "Это приводит нас к гипотезе о том, когда GPT на основе LLM будет делать все правильно, а когда он будет делать что-то неправильно (или галлюцинировать). Когда есть общее согласие по теме и есть большой объем языка, доступный для обучения модели, GPT на основе LLM будут отражать это консенсусное мнение. Но в случаях, когда недостаточно примеров языка по теме, или тема является спорной, или нет четкого консенсуса по теме, опора на эти системы приведет к сомнительным результатам. Если эта гипотеза верна, то галлюцинации должны чаще возникать при работе с темами, которые являются неясными или спорными.

Чтобы проверить эту гипотезу, мы придумали набор простых подсказок, которые различались как по неясности темы, так и по степени противоречий вокруг темы. Затем мы задавали эти вопросы различным GPT в течение определенного периода времени. Прогноз заключался в том, что чем более неясной или спорной является тема, тем больше вероятность того, что результат будет неверным."

См. также другие публикации по теме галлюцинации

Риски ИИ

Горячая тема. В статье приводится расшифровка рисков ИИ, которые специфицируют частные компании и государства

См. также нашу статью О киберрисках генеративного ИИ

Другие публикации по теме риски

Sunday, October 27, 2024

Out of Distribution ML

Цель этого репозитория — предоставить наиболее полный, актуальный, высококачественный ресурс для обнаружения OOD, надежности и обобщения в машинном обучении/глубоком обучении. Ваш универсальный магазин для всего, что касается OOD, здесь.

P.S. см. также другие публикации по теме OOD

Saturday, October 26, 2024

Публикации по теме Искусственный интеллект в кибербезопасности

Вопросы безопасности систем ИИ рассматриваются в двух магистерских программах факультета ВМК МГУ имени М.В. Ломоносова: Искусственный интеллект в кибербезопасности и Кибербезопасность (совместно со Сбербанк). Ниже приведен список публикаций, подготовленных в процессе реализации этих программ.

Ильюшин Е. А., Намиот Д. Е. An approach to the automatic enhancement of the robustness of ml models to external influences on the example of the problem of biometric speaker identification by voice // International Journal of Open Information Technologies. — 2021. — Vol. 9, no. 6. — P. 11–19.

Намиот Д. Е., Ильюшин Е. А., Чижов И. В. Текущие академические и индустриальные проекты, посвященные устойчивому машинному обучению // International Journal of Open Information Technologies. — 2021. — Т. 9, № 10. — С. 35–46.

Намиот Д. Е., Ильюшин Е. А., Чижов И. В. Основания для работ по устойчивому машинному обучению // International Journal of Open Information Technologies. — 2021. — Т. 9, № 11. — С. 68–74.

Намиот Д. Е., Ильшин Е. А., Чижов И. В. Военные применения машинного обучения // International Journal of Open Information Technologies. — 2022. — Т. 10, № 1. — С. 69–76.

Ильюшин Е. А., Намиот Д. Е., Чижов И. В. Атаки на системы машинного обучения – общие проблемы и методы // International Journal of Open Information Technologies. — 2022. — Т. 10, № 3. — С. 17–22.

Namiot D., Ilyushin E. On monitoring of machine learning models // Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2022) : материалы XXV международной научной конференции: Москва, 26–30 сентября 2022 года / под общ. ред. В. М. Вишневского и К. Е. Самуйлова. — РУДН Москва: 2022. — P. 150–157.

Namiot D., Ilyushin E., Chizhov I. On a formal verification of machine learning systems // International Journal of Open Information Technologies. — 2022. — Vol. 10, no. 5. — P. 30–34.

Huayu L., Namiot D. A survey of adversarial attacks and defenses for image data on deep learning // International Journal of Open Information Technologies. — 2022. — Vol. 10, no. 5. — P. 9–16.

Намиот Д., Ильюшин Е., Пилипенко О. Доверенные платформы искусственного интеллекта // International Journal of Open Information Technologies. — 2022. — Т. 10, № 7. — С. 119–127.

Намиот Д., Ильюшин Е. Порождающие модели в машинном обучении // International Journal of Open Information Technologies. — 2022. — Т. 10, № 7. — С. 101–118.

Биджиев Т. М., Намиот Д. Е. Исследование существующих подходов к встраиванию вредоносного программного обеспечения в искусственные нейронные сети // International Journal of Open Information Technologies. — 2022. — Т. 10, № 9. — С. 21–31.

Намиот Д. Е., Ильюшин Е. А. Об устойчивости и безопасности систем искусственного интеллекта // International Journal of Open Information Technologies. — 2022. — Т. 10, № 9. — С. 126–134.

Намиот Д. Е., Ильюшин Е. А., Чижов И. В. Искусственный интеллект и кибербезопасность // International Journal of Open Information Technologies. — 2022. — Т. 10, № 9. — С. 135–147.

Stroeva E., Tonkikh A. Methods for formal verification of artificial neural networks: A review of existing approaches // International Journal of Open Information Technologies. — 2022. — Vol. 10, no. 10. — P. 3.

Намиот Д., Ильюшин Е. Мониторинг сдвига данных в моделях машинного обучения // International Journal of Open Information Technologies. — 2022. — Т. 10, № 12. — С. 84–93.

Костюмов, Василий Владимирович. "Обзор и систематизация атак уклонением на модели компьютерного зрения." International Journal of Open Information Technologies 10.10 (2022): 11-20.

Намиот Д. Е., Ильюшин Е. А. О причинах неудач проектов машинного обучения // International Journal of Open Information Technologies. — 2023. — Т. 11, № 1. — С. 60–69.

Намиот Д. Е. Введение в атаки отравлением на модели машинного обучения // International Journal of Open Information Technologies. — 2023. — Т. 11, № 3. — С. 58–68.

Namiot D. E., Ilyushin E., Chizhov I. On the practical generation of counterfactual examples // Труды Института системного анализа Российской академии наук. — 2023. — Vol. 73, no. 1. — P. 73–81.

Junzhe S., Namiot D. E. A survey of model inversion attacks and countermeasures // Труды Института системного анализа Российской академии наук. — 2023. — Vol. 73, no. 1. — P. 82–93.

Junzhe S., Namiot D. A survey of the implementations of model inversion attacks // Communications in Computer and Information Science. — 2023. — Vol. 1748. — P. 3–16.

Намиот Д. Е. Схемы атак на модели машинного обучения // International Journal of Open Information Technologies. — 2023. — Т. 11, № 5. — С. 68–86.

On the evasion attack detector / L. Huayui, V. Kostyumov, O. Pilipenko, D. Namiot // DCCN 2023. Материалы конференции. — ИПУ РАН Москва: 2023. — P. 183–188.

Junzhe S., Namiot D. On the machine learning models inversion attack detector // DCCN 2023. Материалы конференции. — ИПУ РАН Москва: 2023. — P. 194.

Lozinskii I., Kostyumov V., Stroeva E. Extraction of trigger and mask from poisoned data using modified activation clustering and neural cleanse methods // International Journal of Open Information Technologies. — 2023. — Vol. 11, no. 7. — P. 1

Чехонина, Екатерина Андреевна, and Василий Владимирович Костюмов. "ОБЗОР СОСТЯЗАТЕЛЬНЫХ АТАК И МЕТОДОВ ЗАЩИТЫ ДЛЯ ДЕТЕКТОРОВ ОБЪЕКТОВ." International Journal of Open Information Technologies 11.7 (2023): 11-20.

Пришлецов Д. Е., Пришлецов С. Е., Намиот Д. Е. Камуфляж как состязательные атаки на модели машинного обучения // International Journal of Open Information Technologies. — 2023. — Т. 11, № 9. — С. 41–49.

Намиот Д. Е., Зубарева Е. В. О работе ai red team // International Journal of Open Information Technologies. — 2023. — Т. 11, № 10. — С. 130–139.

Намиот Д. Е., Ильюшин Е. А. Доверенные платформы искусственного интеллекта: сертификация и аудит // International Journal of Open Information Technologies. — 2024. — Т. 12, № 1. — С. 43–60.

Киржинов Д. А., Ильюшин Е. А. Сравнительный анализ алгоритмов атак и защиты на графовые архитектуры ИНС // International Journal of Open Information Technologies. — 2024. — Т. 12, № 2.

Намиот Д. Е., Романов В. Ю. Об улучшении робастности моделей машинного обучения // International Journal of Open Information Technologies. — 2024. — Т. 12, № 3. — С. 88–98.

Junzhe S., Namiot D. On real-time model inversion attacks detection // Lecture Notes in Computer Science. — 2024. — Vol. 14123. — P. 56–67.

Мударова Р. М., Намиот Д. Е. Противодействие атакам типа инъекция подсказок на большие языковые модели // International Journal of Open Information Technologies. — 2024. — Т. 12, № 5. — С. 39–48.

Намиот Д. Е., Ильюшин Е. А. Искусственный интеллект в кибербезопасности: поиск вредоносного программного обеспечения // International Journal of Open Information Technologies. — 2024. — Т. 12, № 6. — С. 143–149.

Селевенко Р. М., Строева Е. Н. Исследование и разработка алгоритма формальной верификации и метрики оценки качества на основе методов понижения размерности ИНС // INJOIT. — 2024. — Т. 12, № 6. — С. 2.

Биджиев Т. М., Намиот Д. Е. Атаки на модели машинного обучения, основанные на фреймворке pytorch // Автоматика и телемеханика. — 2024. — № 3. — С. 38–50.

Намиот Д. Е., Ильюшин Е. А. О сертификации систем искусственного интеллекта // Физика элементарных частиц и атомного ядра. — 2024. — Т. 55, № 3. — С. 530–536.

Намиот Д. Е., Куприяновский В. П., Пичугов А. А. Состязательные атаки для автономных транспортных средств // International Journal of Open Information Technologies. — 2024. — Т. 12, № 7. — С. 139–149.

Намиот Д. Е. О кибератаках с помощью систем Искусственного интеллекта // International Journal of Open Information Technologies. — 2024. — Т. 12, № 9. — С. 132–141.

Воробьев, Егор Александрович. "Анализ состязательных атак на системы сегментации изображений." International Journal of Open Information Technologies 12.10 (2024): 1-25.

Намиот Д. Е., Ильюшин Е. А. О киберрисках генеративного Искусственного Интеллекта // International Journal of Open Information Technologies. — 2024. — Т. 12, № 10. — С. 109–119.

Порывай, Максим Викторович. "Сравнительное исследование методов естественной аугментации изображений." International Journal of Open Information Technologies 12.10 (2024): 26-33.

Friday, October 25, 2024

Wednesday, October 23, 2024

0.1%

Контроль такого количества данных при тренировке LLM позволяет отравить ее обучающий набор:

"Большие языковые модели предварительно обучаются на неконтролируемых текстовых наборах данных, состоящих из триллионов токенов, извлеченных из Интернета. Предыдущие работы показали, что: (1) извлеченные из Интернета предварительно обучающие наборы данных могут быть практически отравлены злоумышленниками; и (2) злоумышленники могут скомпрометировать языковые модели после отравления наборов данных тонкой настройки. Наша работа впервые оценивает, могут ли языковые модели также быть скомпрометированы во время предварительной настройки, с акцентом на постоянство предварительных обучающих атак после того, как модели будут настроены как полезные и безвредные чат-боты. Мы предварительно обучаем ряд LLM с нуля, чтобы измерить влияние потенциального отравляющего противника при четырех различных целях атаки (отказ в обслуживании, манипулирование убеждениями, джейлбрейк и быстрая кража) и в широком диапазоне размеров моделей (от 600 МБ до 7 Б). Наш главный результат заключается в том, что отравление только 0,1% набора данных до обучения модели достаточно для того, чтобы три из четырех атак измеримо сохранялись после обучения. Более того, простые атаки, такие как отказ в обслуживании, сохраняются после обучения с уровнем отравления всего 0,001%." - отсюда

См. также другие публикации, посвященные LLM

Tuesday, October 22, 2024

Состязательные атаки на LLM

"Большая часть работы по состязательным атакам проводится на изображениях. Это работа в непрерывном, многомерном пространстве. Атаки на дискретные данные, такие как текст, считаются гораздо более сложными из-за отсутствия прямых градиентных сигналов. Состязательные атаки — это входные данные, которые заставляют модель выводить что-то нежелательное. Большая часть ранней литературы была сосредоточена на задачах классификации, в то время как недавние усилия начинают больше исследовать выходные данные генеративных моделей. В контексте больших языковых моделей, в этой статье предполагается, что атаки происходят только во время вывода, что означает, что веса модели фиксированы." - хороший обзор атак на LLM

См. также другие публикации по теме adversarial, посвященные устойчивому машинному обучению и LLM

Цифровые двойники и CPS

Пара интересных работ по использованию цифровых двойников в кибербезопасности кибер-физических систем

"Интеграция и автоматизация промышленных процессов принесли значительный рост эффективности и производительности, но также увеличили риски кибербезопасности, особенно в перерабатывающей промышленности. В этой статье представлена методология, использующая интеллектуальный анализ процессов и цифровых двойников для улучшения обнаружения аномалий в промышленных системах управления (ICS). Преобразуя необработанные журналы устройств в журналы событий, мы обнаруживаем закономерности и аномалии, указывающие на кибератаки, даже когда такие атаки маскируются обычными эксплуатационными данными. Мы представляем подробное исследование случая, воспроизводящего промышленный процесс, чтобы продемонстрировать практическое применение нашего подхода. Экспериментальные результаты подтверждают эффективность нашего метода в выявлении киберфизических атак в реалистичной промышленной обстановке." - отсюда. Иными словами идея следующая: автоматически преобразовать системный журнал в журнал событий, а затем искать паттерны атаки уже по событиям

Безопасность киберфизических систем (CPS) при наличии кибератак имеет решающее значение для благополучия персонала, эксплуатирующего их, и безопасности предоставляемых услуг. Например, CPS может быть развернута в промышленной автоматизации и критической инфраструктуре. Взаимозависимость между ее компонентами подразумевает, что атака на один из них может вызвать каскадный сбой в системе из-за неисправностей (отклонений от поведения соответствия) во время работы компонента(ов). Это может затруднить работу и повлиять на безопасность. Наша цель — проанализировать последствия кибератак на компоненты — чтобы лучше охватить горизонт событий безопасности (границу, до которой события не могут повлиять на безопасность) физической системы. Для этого мы интегрируем модель каскадных отказов в цифровой двойник (DT), используя поведенческие модели компонентов системы на основе вероятностного автомата Мили. Наш DT разработан для обеспечения анализа безопасности путем выявления отклонений, которые могут повлиять на функциональную и физическую безопасность. - отсюда

Monday, October 21, 2024

Атаки во благо

Если нельзя предотвратить, то нужно это возглавить. Добавление состязательных модификаций к исходным данным для защиты.

Состязательные атаки в компьютерном зрении используют уязвимости моделей машинного обучения, внося едва заметные изменения во входные данные, что часто приводит к неверным прогнозам или классификациям. Эти атаки стали более сложными с появлением глубокого обучения, представляя значительные проблемы в критически важных приложениях, которые могут быть вредны для общества. Однако существует также богатое направление исследований с преобразующей точки зрения, которое использует состязательные методы для общественного блага. В частности, мы изучаем рост проактивных схем — методов, которые шифруют входные данные с использованием дополнительных сигналов, называемых шаблонами, для повышения производительности моделей глубокого обучения. Встраивая эти незаметные шаблоны в цифровые носители, проактивные схемы применяются в различных приложениях, от простых улучшений изображений до сложных фреймворков глубокого обучения для повышения производительности по сравнению с пассивными схемами, которые не изменяют распределение входных данных для своего фреймворка. В обзоре рассматриваются методологии, лежащие в основе этих проактивных схем, процессы шифрования и обучения, и их применение в современных приложениях компьютерного зрения и обработки естественного языка. Кроме того, в нем обсуждаются проблемы, потенциальные уязвимости и будущие направления для проактивных схем, в конечном итоге подчеркивая их потенциал для содействия ответственному и безопасному развитию технологий глубокого обучения.

Sunday, October 20, 2024

Что делать с дипфейками?

Дипфейки — гиперреалистичные цифровые подделки — привлекли значительное внимание, поскольку быстрое развитие генеративного ИИ упростило создание убедительно реалистичных видео и аудиозаписей, которые могут обмануть даже самых взыскательных зрителей. Хотя дипфейки являются мощным инструментом социальной инженерии, специалистам по кибербезопасности не нужно обращаться к новым технологиям обнаружения или интенсивным программам обучения «как распознать дипфейк», чтобы снизить риск, который они представляют. Цель этого исследования — предоставить руководство, устойчивое к развивающимся угрозам, усиленным дипфейком, путем применения фундаментальных принципов безопасности.

Ключевые стратегии, которые поддерживает руководство, включают:
– Сосредоточение внимания на соблюдении процесса, а не на визуальном или слуховом обнаружении подделок
– Внедрение и поддержание строгого финансового контроля и процедур проверки
– Развитие культуры осведомленности и скептицизма в отношении необычных запросов.
– Разработка и регулярное обновление планов реагирования на инциденты.

Отсюда: OWASP - Руководство по подготовке и реагированию на события Deepfake

Определить дипфейки уже не удастся. Нужно подготовиться к жизни с ними.

Saturday, October 19, 2024

О борьбе с дипфейками

MIT Technology Review о борьбе с порно-фейками: Three ways we can fight deepfake porn

Эти три способа:
водяные знаки (метки для контента)
модификация изображений для затруднения использования их в генеративном ИИ
законодательство

о детектировании дипфейков речи уже не идет ...

Friday, October 18, 2024

Сдвиг концепций

"С расцветом методов машинного обучения (ML) специалисты по программному обеспечению создают системы ML для обработки огромного объема потоковых данных для различных задач по программной инженерии, таких как прогнозирование сбоев в AIOps. Обученные с использованием исторических данных, такие модели ML сталкиваются с ухудшением производительности, вызванным дрейфом концепций, т. е. изменениями данных и взаимосвязей (концепций) между обучением и производством. Важно использовать обнаружение разрыва концепций для мониторинга развернутых моделей ML и повторного обучения моделей ML при необходимости.

В этой работе мы исследуем применение современных (SOTA) методов обнаружения дрейфа концепций на синтетических и реальных наборах данных в промышленных условиях. Такие промышленные условия требуют минимальных ручных усилий по маркировке и максимальной общности в архитектуре модели ML. Мы обнаружили, что текущие полуконтролируемые методы SOTA не только требуют значительных усилий по маркировке, но и работают только для определенных типов моделей ML. Чтобы преодолеть такие ограничения, мы предлагаем новую модельно-независимую технику (CDSeer) для обнаружения дрейфа концепций. Наша оценка показывает, что CDSeer имеет лучшую точность и полноту по сравнению с современными решениями, при этом требуя значительно меньше ручной маркировки. Мы демонстрируем эффективность CDSeer при обнаружении дрейфа концепций, оценивая его на восьми наборах данных из разных доменов и вариантов использования. Результаты внутреннего развертывания CDSeer на промышленном запатентованном наборе данных показывают улучшение точности на 57,1% при использовании на 99% меньше меток по сравнению с методом обнаружения дрейфа концепций SOTA. Производительность также сопоставима с контролируемым методом обнаружения дрейфа концепций, который требует маркировки 100% данных. Повышенная производительность и простота внедрения CDSeer ценны для повышения надежности систем машинного обучения." - отсюда

Отражение атак на IDS

IDS-Anta: An open-source code with a defense mechanism to detect adversarial attacks for intrusion detection system

"Система обнаружения вторжений (IDS) имеет решающее значение для защиты организаций от киберугроз. Уязвимость IDS на основе машинного обучения и глубокого обучения к состязательным атакам возникает из-за преднамеренного создания злоумышленниками состязательных образцов. В этом исследовании предлагается репозиторий открытого исходного кода на основе Python под названием IDS-Anta с надежным механизмом защиты для выявления состязательных атак без ущерба для производительности IDS. Он использует многорукие бандиты с выборкой Томсона, оптимизацию колонии муравьев (ACO) и методы генерации состязательных атак и проверен с использованием трех общедоступных наборов данных эталонных тестов. Этот репозиторий кода можно легко применять и реплицировать в наборах данных IDS против состязательных атак."

См. также другие публикации по теме adversarial, посвященные устойчивому машинному обучению

Thursday, October 17, 2024

О достоверных данных

Наука о достоверных данных предлагает структуру для оценки достоверности ваших результатов, демонстрируя, что они соответствуют (или предсказуемы) реальному сценарию, в котором они будут применяться, и активно изучая ряд источников неопределенности с помощью серии исследований стабильности, все в контексте реального мира проблемы предметной области.

Эта структура называется структурой предсказуемости, вычислимости и стабильности (PCS). Вы можете показать, что ваши результаты предсказуемы, вычислительно продемонстрировав, что они повторно появляются в соответствующих будущих данных и соответствуют знаниям предметной области (предсказуемость можно рассматривать как проверку реальности), и вы можете показать, что они стабильны, вычислительно продемонстрировав, что они не меняются кардинально, когда соответствующие изменения вносятся в течение всего жизненного цикла. Вычислительно демонстрируя, что ваши результаты предсказуемы и стабильны, вы предоставляете доказательства того, что ваши выводы, основанные на данных (и последующие решения в реальном мире), заслуживают доверия и соответствуют реальности. - книга в открытом доступе

Сенсоры - в блокчейн

Безопасные данные дистанционного зондирования с помощью блокчейна Технология распределенного реестра: решение для умных городов

"В частности, в контексте умных городов данные дистанционного зондирования (ДЗ) стали одной из самых горячих тем для изучения в области информационно-коммуникационных технологий (ИКТ) сегодня. Развитие машинного обучения (МО) и искусственного интеллекта (ИИ) позволило решить ряд проблем, включая автоматизацию, контроль доступа, оптимизацию, мониторинг и управление. Одновременно с этим существуют значительные проблемы с проектированием и разработкой иерархии процессов, включая неадекватные записи обучения, централизованную архитектуру, защиту конфиденциальности данных и общие ограничения потребления ресурсов. С другой стороны, развитие технологии распределенного реестра (DLT) обеспечивает децентрализованную инфраструктуру, которая позволяет системам устранять централизованные процедуры обмена данными умных городов при переходе от одного сетевого узла к другому, а контроль доступа третьей стороны решает проблемы машинного обучения. Для обработки идеального механизма доставки данных для аналитической модели умных городов в статье используется Частичная оптимизация Swam (POS) в сочетании с защищенной распределенной сетью консорциума блокчейна. Эта работа вносит три вклада. Во-первых, она предлагает безопасный метод передачи, который объединяет блокчейн и машинное обучение для оптимизации пути надежной доставки данных по защищенным каналам. Во-вторых, последовательности шифрования соседства выполняются с использованием шифрования значений с поддержкой повторного шифрования NuCypher proxy, криптографического подхода с открытым ключом, который избегает преобразования шифра. В-третьих, искусственные нейронные сети (ИНС) могут решить проблему классификации доставки данных в умных городах за счет оптимизации управления и сохранения записей."

Wednesday, October 16, 2024

Атаки глубокого леса

Уязвимость Deep Forest к состязательным атакам

"Классификаторы машинного обучения уязвимы к состязательным примерам, которые представляют собой тщательно созданные входные данные, предназначенные для скомпрометировать их эффективность классификации. Недавно был предложен новый классификатор машинного обучения, состоящий из лесов деревьев решений, вдохновленных архитектурой глубоких нейронных сетей. Однако глубокие нейронные сети уязвимы к состязательным атакам. Поэтому в этой работе мы запускаем серию состязательных атак на глубокие леса, включая атаки черного ящика и белого ящика, чтобы впервые оценить его уязвимость к состязательным атакам. Предыдущие работы показали, что состязательные примеры, созданным на одной модели, переносятся на различные модели с различными методами обучения. Мы эмпирически демонстрируем, что глубокий лес уязвим к атакам переносимости на основе кросс-техник. С другой стороны, для улучшения производительности глубокого леса в условиях состязательных ситуаций наша работа включает эксперименты, которые демонстрируют, что обучение недифференцируемых моделей, таких как глубокие леса на случайно или состязательно возмущенных входных данных, увеличивает их состязательную устойчивость к таким атакам. Кроме того, предложен эвристический метод белого ящика для атаки на глубокие леса путем реализации более быстрого и эффективного алгоритма атаки дерева решений. Атакуя оба компонента глубокого леса, а именно каскадный лес и многозернистый слой, мы показываем, что глубокие леса восприимчивы к предлагаемой состязательной атаке белого ящика."

См. также другие публикации по теме adversarial, посвященные устойчивому машинному обучению

Tuesday, October 15, 2024

Генерация синтетических данных

Генеративные модели в транспортных исследованиях

Глубокие генеративные модели (DGM) быстро развивались в последние годы, став важными инструментами в различных областях благодаря своей способности изучать сложные распределения данных и генерировать синтетические данные. Их важность в транспортных исследованиях все больше признается, особенно для таких приложений, как генерация данных о дорожном движении, прогнозирование и извлечение признаков. Эта статья предлагает всеобъемлющее введение и руководство по DGM с акцентом на их применение в транспорте. Она начинается с обзора генеративных моделей, за которым следуют подробные объяснения фундаментальных моделей, систематический обзор литературы и практический обучающий код для помощи в реализации. В статье также обсуждаются текущие проблемы и возможности, подчеркивая, как эти модели могут быть эффективно использованы и далее развиты в транспортных исследованиях. Эта статья служит ценным справочником, направляющим исследователей и практиков от фундаментальных знаний к передовым приложениям DGM в транспортных исследованиях.

Большое О

Big O notation

O(1)
Это нотация постоянного времени. Время выполнения остается постоянным независимо от размера входных данных. Например, доступ к элементу в массиве по индексу и вставка/удаление элемента в хэш-таблице.

O(n) Линейная нотация времени. Время выполнения растет прямо пропорционально размеру входных данных. Например, поиск максимального или минимального элемента в несортированном массиве.

O(log n)
Логарифмическая нотация времени. Время выполнения медленно увеличивается по мере увеличения входных данных. Например, бинарный поиск в отсортированном массиве и операции над сбалансированными бинарными деревьями поиска.

O(n^2)
Квадратичная нотация времени. Время выполнения растет экспоненциально с размером входных данных. Например, простые алгоритмы сортировки, такие как пузырьковая сортировка, сортировка вставкой и сортировка выбором.

O(n^3)
Кубическая нотация времени. Время выполнения быстро увеличивается по мере увеличения размера входных данных. Например, умножение двух плотных матриц с использованием наивного алгоритма.

O(n logn)
Линейная нотация времени. Это смесь линейного и логарифмического роста. Например, эффективные алгоритмы сортировки, такие как сортировка слиянием, быстрая сортировка и сортировка кучей

O(2^n)
Экспоненциальная нотация времени. Время выполнения удваивается с каждым новым элементом ввода. Например, рекурсивные алгоритмы решают задачи, разделяя их на несколько подзадач.

O(n!)
Факториальная нотация времени. Время выполнения резко возрастает с размером ввода. Например, задачи генерации перестановок.

O(sqrt(n))
Квадратная нотация времени. Время выполнения увеличивается относительно квадратного корня ввода. Например, поиск в диапазоне, таком как решето Эратосфена, для нахождения всех простых чисел до n.

Sunday, October 13, 2024

Вредоносные LLM

Интересная работа Ziong Lin - реальное тестирование вредоносных LLM: Malla: Demystifying Real-world Large Language Model Integrated Malicious Services

Что нового: Зилонг Лин и его коллеги из Университета Индианы в Блумингтоне изучали, как большие языковые модели (LLM) используются для предоставления вредоносных услуг, в частности, для генерации вредоносного кода, фишинговых писем и фишинговых веб-сайтов. Они были не очень эффективны, в общем и целом (хотя высокий уровень успеха может быть необязательным для поддержки процветающего рынка автоматизированной преступной деятельности).

Рискованный бизнес: поставщики основывают такие услуги либо на неотцензурированных LLM — то есть тех, которые не были настроены на отражение человеческих предпочтений или не используют фильтры ввода/вывода — либо на общедоступных моделях, которые они предлагают с помощью методов джейлбрейка, которые обходят встроенные защитные ограждения. Они продают свои услуги на хакерских рынках и форумах, взимая гораздо меньше, чем типичные традиционные поставщики вредоносного ПО, но услуги, основанные на моделях, которые были настроены на предоставление вредоносного вывода, требуют наценки. Авторы обнаружили, что одна услуга принесла доход более 28 000 долларов за два месяца.

Разрастающийся рынок: авторы выявили 212 вредоносных сервисов. Из них 125 размещались на платформе Poe AI, 73 — на FlowGPT, а остальные 14 находились на уникальных серверах. Из них авторы не смогли получить доступ к пяти, поскольку либо провайдер их заблокировал, либо сервис был мошенническим. Они выявили 11 LLM, используемых этими сервисами, включая Claude-2-100k, GPT-4 и Pygmalion-13B (вариант LLaMA-13B).

Тестирование качества вывода: авторы запросили более 200 сервисов, используя более 30 запросов, для генерации вредоносного кода, фишинговых писем или фишинговых веб-сайтов. Они оценивали ответы по следующим параметрам:


Формат: как часто они следовали ожидаемому формату (как определено регулярными выражениями)
Компиляция: как часто сгенерированный код Python, C или C++ мог быть скомпилирован
Достоверность: как часто сгенерированный HTML и CSS успешно запускались как в Chrome, так и в Firefox
Читаемость: как часто сгенерированные фишинговые письма были плавными и связными в соответствии с индексом сложности чтения Ганнинга
Уклончивость или как часто сгенерированный текст успешно проходил все предыдущие проверки и избегал обнаружения VirusTotal (для вредоносного кода и фишинговых сайтов) или OOPSpam (для фишинговых писем).

Во всех трех задачах по крайней мере одна служба достигла уклончивости 67 процентов или выше, в то время как большинство служб достигли уклончивости менее 30 процентов.

Тестирование эффективности в реальных условиях: Кроме того, авторы провели практические тесты, чтобы увидеть, насколько хорошо выходные данные работают в реальных ситуациях. Они побудили девять служб сгенерировать код, который будет нацелен на три конкретные уязвимости, связанные с переполнением буфера и инъекцией SQL. В этих тестах модели были заметно менее успешными.

Авторы протестировали сгенерированный код на наличие двух уязвимостей в VICIdial, системе колл-центра, которая, как известно, уязвима к таким проблемам. Из 22 сгенерированных программ, которые удалось скомпилировать, ни одна не изменила базы данных VICIdial или не раскрыла системные данные. Они также протестировали сгенерированный код на OWASP WebGoat 7.1, веб-сайте, который предоставляет код с известными уязвимостями безопасности. Из 39 сгенерированных программ, которые удалось скомпилировать, семь запустили успешные атаки. Однако эти атаки не были нацелены на конкретные уязвимости, запрошенные авторами.

Почему это важно: Предыдущая работа показала, что сервисы на основе LLM могут генерировать дезинформацию и другой вредоносный вывод, но мало исследований изучали их фактическое использование в киберпреступности. Эта работа оценивает их качество и эффективность. Кроме того, авторы опубликовали подсказки, которые они использовали для обхода ограждений и генерации вредоносного вывода — ресурс для дальнейших исследований, направленных на исправление таких проблем в будущих моделях.

Мы думаем: отрадно видеть, что вредоносные сервисы не продвинулись далеко в реальных тестах, и выводы авторов должны смягчить паникерские сценарии киберпреступности с использованием ИИ. Это не значит, что нам не нужно беспокоиться о вредоносных применениях технологии ИИ. Сообщество ИИ несет ответственность за разработку своих продуктов так, чтобы они были полезными, и тщательно оценивать их на предмет безопасности.

/via deeplearning.ai

См. также другие публикации, посвященные LLM

Friday, October 11, 2024

О проблемах автономного вождения

Интересная работа с анализом аварий в автовождении - ROCAS: Анализ первопричин аварий с автономным вождением через киберфизическую комутацию

"Поскольку автономные системы вождения (ADS) изменили нашу повседневную жизнь, безопасность ADS приобретает все большее значение. Хотя появились различные подходы к тестированию для повышения надежности ADS, остается существенный пробел в понимании причин аварий. Такой анализ после аварий имеет первостепенное значение и полезен для повышения безопасности и надежности ADS. Существующие методы анализа первопричин киберфизических систем (CPS) в основном предназначены для дронов и не могут справиться с уникальными проблемами, возникающими из-за более сложных физических сред и моделей глубокого обучения, развернутых в ADS. В этой статье мы устраняем этот пробел, предлагая формальное определение проблемы анализа первопричин ADS и представляя Rocas, новую структуру анализа первопричин ADS с киберфизической коммутацией. Наша методика уникальным образом использует как физическую, так и кибермутацию, которая может точно идентифицировать сущность, вызывающую аварию, и точно определить неверную конфигурацию целевой ADS, ответственной за аварию. Мы также разрабатываем дифференциальный анализ для определения ответственного модуля, чтобы сократить пространство поиска неверной конфигурации. Мы изучаем 12 категорий аварий ADS и демонстрируем эффективность и результативность Rocas в сужении пространства поиска и выявлении неправильной конфигурации. Мы также показываем подробные примеры того, как выявленная неправильная конфигурация помогает понять обоснование аварий."

Примеры причин аварий:
Принимает красный грузовик за красный свет и внезапно останавливается на кольцевом перекрестке
Опознает неправильный светофор из-за особой формы дороги и внезапно останавливается на дороге

См. в этой связи нашу статью О состязательных атаках на автономные транспортные средства

Визуальные уроки

Математика и другие предметы в визуализированных лекциях. Вот, например, лекции по нейронным сетям

См. также другие ссылки по теме визуализация

Wednesday, October 09, 2024

LLM в анализе данных

"В этой статье рассматривается потенциал инструментов на основе ИИ для изменения анализа данных, уделяя особое внимание соображениям и проблемам проектирования. Мы изучаем, как появление больших языковых и мультимодальных моделей открывает новые возможности для улучшения различных этапов рабочего процесса анализа данных путем перевода намерений пользователя высокого уровня в исполняемый код, диаграммы и идеи. Затем мы изучаем принципы проектирования, ориентированные на человека, которые облегчают интуитивное взаимодействие, создают доверие пользователей и оптимизируют рабочий процесс анализа с помощью ИИ в нескольких приложениях. Наконец, мы обсуждаем исследовательские проблемы, которые препятствуют разработке этих систем на основе ИИ, такие как расширение возможностей моделей, оценка и бенчмаркинг, а также понимание потребностей конечного пользователя." - Анализ данных с помощью LLM "

См. также другие публикации, посвященные LLM

Практический IoT

Интересная статья с описанием Open Source архитектурных решений для IoT:

В этой статье обсуждается разработка системы IoT для мониторинга и управления различными устройствами и системами от разных поставщиков. Авторы рассмотрели ключевые проблемы в проектах IoT, такие как совместимость и интеграция, масштабируемость, а также хранение, обработка и визуализация данных на этапах проектирования и развертывания. В дополнение к этим общим проблемам авторы также углубляются в конкретные проблемы интеграции, с которыми они столкнулись. Различные устройства и системы были интегрированы в систему, и для иллюстрации возникших проблем используются пять реальных сценариев в среде университетского городка. Сценарии включают мониторинг различных аспектов среды университетского городка, включая качество воздуха, параметры окружающей среды, энергоэффективность, солнечную фотоэлектрическую энергию и потребление энергии. Авторы проанализировали данные и использование ЦП, чтобы убедиться, что система может обрабатывать большой объем данных, генерируемых устройствами. Разработанная платформа использует проекты с открытым исходным кодом, такие как Home Assistant, InfluxDB, Grafana и Node-RED. Все разработки были опубликованы как проекты с открытым исходным кодом в публичных репозиториях. В заключение следует отметить, что в данной работе подчеркивается потенциал и осуществимость систем Интернета вещей в различных реальных приложениях, важность учета ключевых проблем в проектах Интернета вещей на этапах проектирования и развертывания, а также конкретные проблемы интеграции, с которыми можно столкнуться."

отсюда

См. также другие публикации по теме IoT

Monday, October 07, 2024

Автоматизация запросов

Автоматизированная разработка подсказок: полное практическое руководство
Узнайте, как автоматизировать разработку подсказок и добиться значительных улучшений производительности в рабочей нагрузке LLM. Код доступен на Github

См. также другие публикации, посвященные LLM

Sunday, October 06, 2024

Saturday, October 05, 2024

Риски генеративных моделей ИИ и их тестирование

"Настоящая статья посвящена обзору рисков генеративных моделей Искусственного Интеллекта. Бурное развитие больших языковых моделей серьезно повысило внимание к безопасности моделей Искусственного интеллекта. С практической точки зрения, в данном случае, речь идет о безопасности моделей глубокого обучения. Большие языковые модели подвержены атакам отравления, атакам уклонения, атакам, направленным на извлечение тренировочных данных и т.д. Но, вместе с этим, появляются и новые атаки, связанные именно с создаваемым контентом. Причем последние составляют очевидное большинство. Поэтому в последнее время появилось много работ, которые пытаются систематизировать все риски генеративных моделей. Этим занимаются, например, OWASP и NIST. Полная таксономия рисков генеративного ИИ должна послужить основой для построения систем тестирования генеративных моделей. В работе приводится обзор спецификаций рисков генеративного ИИ, изложенных OWASP, профилем NIST и репозиторием рисков от MIT. Цель подобных спецификаций – создать базу для тестирования генеративных моделей и инструментов, предназначенных для AI Red Team." - статья О киберрисках генеративного Искусственного Интеллекта

Стороннее тестирование как ключевой элемент политики в области ИИ - пишет Antropic, возможно, основной конкурент Open AI. И в этой связи собирает предложения в рамках своей инициативы по разработке сторонних оценок моделей ИИ

Требования к тестам для LLM

Метрики для оценки LLM приложений

Friday, October 04, 2024

Библиотека промптов

Библиотека промптов для LLM. Довольно большой список задач

См. также другие публикации, посвященные LLM

INJOIT том 12, номер 10

Вышел десятый номер журнала INJOIT в 2024 году. И двенадцатый год издания журнала.

Темы статей:

  • Анализ состязательных атак на системы сегментации изображений
  • Сравнительное исследование методов естественной аугментации изображений
  • Алгоритм защиты от состязательных атак в языковых моделях
  • Development of a web application for applying the analytic hierarchy process
  • Математическая модель фильтрации с учетом капиллярных сил в мультипоровой среде
  • Оценивание с помощью метода наименьших модулей регрессионных моделей с целочисленными функциями пол и потолок
  • Methodology for Analyzing Thematic Co-Authorship Networks
  • Статистическая модель поиска целевых объектов в социальной сети
  • Система мониторинга для балансировки нагрузки узлов распределенной вычислительной системы на основе смартфонов
  • О роли и месте институционального репозитория в цифровой экосистеме научной организации
  • Оценка функциональной (параметрической) полноты информационных рисков
  • О киберрисках генеративного Искусственного Интеллекта
  • Использование автоматизированных информационных систем для улучшения процесса управления доставками: перспективы и вызовы
  • Экономика данных
  • Концепция стохастического метамоделирования интеллектуальных цифровых экосистем
  • Exploring Fine-grained Task Parallelism on Simultaneous Multithreading Cores

/via Лаборатория ОИТ

Архив журнала находится здесь.

Thursday, October 03, 2024

Тестирование LLM

Пример ферймворка для тестирования LLM

См. также другие публикации, посвященные LLM

Как кэшировать базы данных

Схема, которую использует UBER в своей высоконагруженной системе:

Uber построил CacheFront — интегрированное решение для кэширования с Redis, Docstore и MySQL. Чтение и запись файлов с использованием CDC (Change Data Capture). Реализация состоит из 3 основных частей:

1. Чтение и запись с CDC
Вместо микросервиса, механизм запросов Docstore взаимодействует с Redis для запросов на чтение. При попадании в кэш механизм запросов извлекает данные из Redis. При промахах кэша запрос отправляется в механизм хранения и базу данных. В случае записи служба CDC Docstore (Flux) делает записи в Redis недействительными. Она отслеживает события binlog MySQL, чтобы инициировать аннулирование.

2. Разогрев кэша в нескольких регионах с помощью потоковой передачи Redis
Отказ региона может привести к промахам кэша и перегрузке базы данных. Чтобы справиться с этим, инженерная группа Uber использует репликацию Redis между регионами. Это делается путем отслеживания потока записи Redis для репликации ключей в удаленный регион. В удаленном регионе потребитель потока отправляет запросы на чтение в механизм запросов, который считывает базу данных и обновляет кэш.

3. Redis и шардинг Docstore
Все команды в Uber используют Docstore, при этом некоторые генерируют огромное количество запросов. Экземпляры Redis и Docstore шардированы или разделены для обработки нагрузки. Но один кластер Redis, выходящий из строя, может создать горячий шард БД. Чтобы предотвратить это, инженеры разделили кластер Redis, используя схему, отличную от шардинга БД. Это гарантирует равномерное распределение нагрузки.

/via bytebytego.com и Uber

Wednesday, October 02, 2024

Оцени LLM

Как оценивать LLM? Один из варинтов - оценка с помощью другой LLM

"Оценка больших языковых моделей (LLM) представляет собой уникальные проблемы. Хотя автоматическая параллельная оценка, также известная как LLM-как-судья, стала многообещающим решением, разработчики и исследователи моделей сталкиваются с трудностями масштабируемости и интерпретируемости при анализе результатов оценки. Для решения этих проблем мы представляем LLM Comparator, новый визуальный аналитический инструмент, разработанный для параллельнй оценки LLM. Этот инструмент предоставляет аналитические рабочие процессы, которые помогают пользователям понять, когда и почему один LLM превосходит или уступает другому, и как отличаются их ответы. Благодаря тесному сотрудничеству с практиками, разрабатывающими LLM в Google, мы итеративно проектировали, разрабатывали и совершенствовали инструмент. Качественные отзывы этих пользователей подчеркивают, что инструмент облегчает углубленный анализ отдельных примеров, одновременно позволяя пользователям визуально просматривать и гибко разрезать данные. Это позволяет пользователям выявлять нежелательные закономерности, формулировать гипотезы о поведении модели и получать информацию для ее улучшения. LLM Comparator интегрирован в платформы оценки LLM от Google и имеет открытый исходный код."

См. также другие публикации, посвященные LLM

Фишинговые фичи

Интересный подход к определению фишинговых URL

см. также другие публикации по теме фишинг