Интересный эксперимент: "Это приводит нас к гипотезе о том, когда GPT на основе LLM будет делать все правильно, а когда он будет делать что-то неправильно (или галлюцинировать). Когда есть общее согласие по теме и есть большой объем языка, доступный для обучения модели, GPT на основе LLM будут отражать это консенсусное мнение. Но в случаях, когда недостаточно примеров языка по теме, или тема является спорной, или нет четкого консенсуса по теме, опора на эти системы приведет к сомнительным результатам. Если эта гипотеза верна, то галлюцинации должны чаще возникать при работе с темами, которые являются неясными или спорными.
Чтобы проверить эту гипотезу, мы придумали набор простых подсказок, которые различались как по неясности темы, так и по степени противоречий вокруг темы. Затем мы задавали эти вопросы различным GPT в течение определенного периода времени. Прогноз заключался в том, что чем более неясной или спорной является тема, тем больше вероятность того, что результат будет неверным."
См. также другие публикации по теме галлюцинации
No comments:
Post a Comment