Страницы

Friday, November 01, 2024

Атаки на трекеры объектов

"В последние годы значительное внимание привлекло устранение уязвимости глубоких нейронных сетей (DNN). Хотя недавние исследования по состязательным атакам и защите в основном касались одного изображения, было предпринято мало усилий для выполнения временных атак на видеопоследовательности. Поскольку временная согласованность между кадрами не учитывается, существующие подходы к состязательным атакам, разработанные для статических изображений, неэффективны для глубокого отслеживания объектов. В этой работе мы генерируем состязательные примеры поверх видеопоследовательностей, чтобы повысить надежность отслеживания против состязательных атак в настройках белого и черного ящика. С этой целью мы учитываем сигналы движения при генерации легких возмущений по оценочным результатам отслеживания по кадрам. Для атаки белого ящика мы генерируем временные возмущения с помощью известных трекеров, чтобы значительно ухудшить производительность отслеживания. Мы передаем сгенерированные возмущения в неизвестные целевые трекеры для атаки черного ящика, чтобы добиться переноса атак. Кроме того, мы обучаем универсальные состязательные возмущения и напрямую добавляем их во все кадры видео, повышая эффективность атаки с небольшими вычислительными затратами. С другой стороны, мы последовательно учимся оценивать и удалять возмущения из входных последовательностей, чтобы восстановить производительность отслеживания. Мы применяем предложенные состязательные подходы к атаке и защите к современным алгоритмам отслеживания. Обширные оценки на крупномасштабных наборах данных эталонных тестов, включая OTB, VOT, UAV123 и LaSOT, показывают, что наш метод атаки значительно ухудшает производительность отслеживания с благоприятной переносимостью на другие магистрали и трекеры. В частности, предложенный метод защиты восстанавливает исходную производительность отслеживания в некоторой степени и достигает дополнительного прироста производительности, когда не находится под состязательными атаками" - Robust Deep Object Tracking against Adversarial Attacks

См. также другие публикации по теме adversarial, посвященные устойчивому машинному обучению и LLM

No comments:

Post a Comment